Hydrogen Electric Cars

Kevin Kendall & Iain Staffell Chemical Engineering University of Birmingham

k.kendall@bham.ac.uk

SUSTAINABILITY PROBLEM

- Transport takes about 30% of our energy planes, ships, trucks, cars etc
- All of it is fossil fuel; carbon problem
- Half of this is our cars

WE NEED TO TAKE PERSONAL ACTION

UK OIL AND GAS SUPPLY AND DEMAND

CARS CAUSE DEATH

- Approx 8,500 people die in UK as a result of particulate emissions from vehicles
- Every 10 µg/m3 PM10 =1% increase mortality (all cause)
 [COMEAP Prof Jon Ayres]

ANSWER: ELECTRIC CARS

• Are electric cars better?

CABLED demonstration project

• Early indicative results

Solve problems with hydrogen hybrid

NEEDS ACTION IN BIRMINGHAM

Well to Wheel Approach for Fossil Fuels

Well to Wheel Approach for Electricity

Comparison of Well to Wheel Efficiency

Possible New Generation

Wind

Off-shore wind

Wave

Solar

Nuclear

ONE SOLUTION

1.4 kW

Feed in tariff 40p/unit

Save £500/year

Cost £7000

Return 8%

25 delivered 12 Dec 2009

a Mitsul

tsubishi Electric Car

UTA

CABLED – Coventry And Birmingham Low Emission Demonstrator

- •Consortium of 13 organisations
- Arup as Project Managers
- •6 vehicle manufacturers
- •E.ON electricity supplier
- •Birmingham City Council
- •Coventry City Council
- •3 universities
 - Aston
 - Birmingham
 - Coventry
- •£7.5 M subsidy from TSB & AWM

37 charging points in West Midlands

RESULT

Nominal Range 80 miles

True range 56 miles

Worst 30 miles

Average trip 20 miles

JOURNEY MILES

JOURNEY TIME

PLUG IN START TIME

Frequency

PROBLEMS OF ELECTRIC CARS

- Low range a problem
- Too long to charge up makes life difficult
- No charging points real pain
- Cycle life not known
 50 cycles no problem

HYDROGEN HYBRID CAR

• Hydrogen gives energy storage

• Microcab- fuel cell recharges battery

• Smaller battery

BENEFITS OF HYBRID FC vehicle

- 1. Small fuel cell
- 2. Lighter + cheaper batteries
- 3. No deep discharge ; long life
- 4. Fast refuel

Economic, Low mass, Long life, Rapid refuel

Fuel cell hybrid car 2005

£50k prototype vs £4M for GM

MICROCAB & HYDROGEN STATION

Mail Run

RESULTS

- Combined 3,000km travelled (approx. 3,000 trips around campus)
- Racked up 5,000 hours operational time (>2,000 in the leading vehicle)
- Over 120 refuelling events (58kg of hydrogen transferred with no incidents)

Tank to wheel efficiency

Proposed Microcab Improvements

- Ensure batteries are left at high SOC
- Cut off fuel cell before inefficiency creeps in
- Cost: £10
- Increase top speed to 40 mph
- Efficiency 63% -> 88%
- Cost: £2,000 for 10 kW
- More storage / less weight (90 Wh/kg)
- Greater charge/discharge efficiency
- Cost: £2,500 for 5 kWh
- 2 fuel cells in series
- No DC converters?
- Cost: £3000

So, what does all this mean?

- How does the Microcab compare with other hydrogen vehicles?
- How do these compare with today's cars?

Fuel economy of UK prototypes

Fuel economy of UK prototypes

CONCLUSIONS

• Electric cars are coming

CABLED project is demonstrating

Hydrogen cars can solve problems

• Need :- ACTION NOW