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» Why visualise data?
» How we can visualise data
» Big Data Institute
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What is Visualisation?

» Goal of visualisation is to present data in a human-readable
way.

» Visualisation is an important tool for developing a better
understanding of large complex datasets. It is particularly helpful
for users who are not specialists in data modelling.

» Detection of outliers.

» Clustering and segmentation.

» Aid to feature selection.

» Feedback on results of analysis: seeing what you are doing.

» Two aspects: data projection and information visualisation.
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Data projection

» The goal is to project data to a lower-dimensional space
(usually 2d or 3d) while preserving as much information or
structure as possible.

» Once the projection is done standard information visualisation
methods can be used to support user interaction. These may
need to be modified for Big Data.

» The quantity and complexity of many datasets means that
simple visualisation methods, such as Principal Component
Analysis, are not very effective.
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Information Visualisation

» Shneiderman’s mantra: Overview first; zoom and filter; details
on demand.
» Overview provided by projection.
» Zooming on plots.
» Filtering by user interaction; e.g. specify pattern of values
that is of interest.
» Detalls by providing local information.
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Hidden Knowledge

» Understanding the vast quantities of data
that surround us is a real challenge

» We can understand more of it with help.
Machine learning is the computer-based
generation of models from data.

» Parameters in the model express the hidden
connection between inputs and predictions.
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Doubt is not a pleasant condition, but certainty is absurd.

Voltaire

» Real data is noisy.

» We are forced to deal with uncertainty, yet we need to be
guantitative.

» The optimal formalism for inference in the presence of
uncertainty is probability theory.

» We assume the presence of an underlying regularity to make
predictions.

» Bayesian inference allows us to reason probabilistically about
the model as well as the data.
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Interactive Visualisation Tool
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Enhancements to GTM

Currently a very active area of research:
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Curvatures and magnification factors give more information
about shape of manifold.

Hierarchy allows the user to drill down into data, either user-
defined or automated (MML) selection of sub-model positions.
Temporal dependencies in data handled by GTM through Time.
Discrete data handled by Latent Trait Model (LTM): all the other
goodies work for it as well.

Can cope with missing data in training and visualisation.

MML methods for feature selection.

Structured covariance.

Uncertainty measures
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Hierarchical Visualisation
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Proteomics

Submodel 4 Submedel 5 Submodel 6
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Agusta Westland

» AW has pioneered CVM, the continuous recording of airframe
vibration (0-200Hz), to improve the investigation of unusual
occurrences and monitor airframe integrity.

» Develop a probabilistic framework for inferring flight mode and
key parameters from multiple streams of vibration data.

» Improve indicators of airframe condition: the wavelet transform
and kernel entropy to assess the dynamics (i.e. non-stationary
characteristics) of the vibration signal.

» Integrated diagnosis based on probabilistic models of normality
and using a belief network to model prior knowledge about the
domain and interactions between key variables.
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Understanding the Data

8 sensors measuring
vibration
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Feature Selection

Features are selected using GTM with Feature Saliencies.

Sensors are selected by comparing inter-class separation in different
plots.

GTM-FS Feature Saliencies
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Flying through the visualisation
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Petroleum geochemistry: plGl
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Big Data Issues

» Almost all interesting questions involve multivariate answers.
» Don’t forget the lessons of Medium Data:

» data integrity;

» non-linearity;

» generalisation (training vs test: speed, reliability);

» feature selection;

» diagnostics.
» Scaling in number of variables and number of examples

» Hierarchies: divide and conguer

» Move as little information as possible

» Models as ‘data summarisers’

» Bayes (again!) to combine data, information, models, ...
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Institute of Omnivariate Data Analytics

» Full ‘data to decision’ process: high-dimensional visualisation,
Information extraction, uncertainty modelling, inference
techniques, data fusion, knowledge management, data curation,
and web technologies

» 19 UK partners (mainly companies) and 4 international partners

» Bidding for a Centre for Doctoral Training

» Research training

» Partnerships: pilot projects; short courses and workshops;
International exchanges; entrepreneurship

» Open-source software
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We need to understand the vast quantities of data that surround
us; visualisation and machine learning can help us in that task.
Models can be used to uncover the hidden meanings of data.
Visual analytics is a powerful tool that provides insight to non-
specialists.

A probabilistic approach provides many benefits.

It is a multivariate, multi-skilled, collaborative effort.
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Generative Topographic Mapping

Mapping from latent space to data space

f OCW)

A thick rubber sheet studded with tennis balls. GTM defines p(y|x;W); use
Bayes’ theorem to compute p(x|y*;W) for a given point y* in data space.
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