

Big Data Visualisations

Professor Ian Nabney i.t.nabney@aston.ac.uk NCRG

Overview

- Why visualise data?
- How we can visualise data
- Big Data Institute

What is Visualisation?

- Goal of visualisation is to present data in a human-readable way.
- Visualisation is an important tool for developing a better understanding of large complex datasets. It is particularly helpful for users who are not specialists in data modelling.
 - Detection of outliers.
 - Clustering and segmentation.
 - Aid to feature selection.
 - Feedback on results of analysis: seeing what you are doing.
 - Two aspects: data projection and information visualisation.

Data projection

- The goal is to project data to a lower-dimensional space (usually 2d or 3d) while preserving as much information or structure as possible.
- Once the projection is done standard information visualisation methods can be used to support user interaction. These may need to be modified for Big Data.
- The quantity and complexity of many datasets means that simple visualisation methods, such as Principal Component Analysis, are not very effective.

Information Visualisation

- Shneiderman's mantra: Overview first; zoom and filter; details on demand.
 - Overview provided by projection.
 - Zooming on plots.
 - Filtering by user interaction; e.g. specify pattern of values that is of interest.
 - Details by providing local information.

Hidden Knowledge

- Understanding the vast quantities of data that surround us is a real challenge
- We can understand more of it with help. Machine learning is the computer-based generation of models from data.
- Parameters in the model express the hidden connection between inputs and predictions.

Uncertainty

Doubt is not a pleasant condition, but certainty is absurd.

Voltaire

- Real data is noisy.
- We are forced to deal with uncertainty, yet we need to be quantitative.
- The optimal formalism for inference in the presence of uncertainty is probability theory.
- We assume the presence of an underlying regularity to make predictions.
- Bayesian inference allows us to reason probabilistically about the model as well as the data.

ECG Analysis

Aston University

QT interval

Interactive Visualisation Tool

Enhancements to GTM

Currently a very active area of research:

- Curvatures and magnification factors give more information about shape of manifold.
- Hierarchy allows the user to drill down into data; either userdefined or automated (MML) selection of sub-model positions.
- Temporal dependencies in data handled by GTM through Time.
- Discrete data handled by Latent Trait Model (LTM): all the other goodies work for it as well.
- Can cope with missing data in training and visualisation.
- MML methods for feature selection.
- Structured covariance.
- Uncertainty measures

Hierarchical Visualisation

Proteomics

Submodel 4

Submodel 2

Submodel 5

Submodel 3

Submodel 6

Agusta Westland

- AW has pioneered CVM, the continuous recording of airframe vibration (0-200Hz), to improve the investigation of unusual occurrences and monitor airframe integrity.
- Develop a probabilistic framework for inferring flight mode and key parameters from multiple streams of vibration data.
- Improve indicators of airframe condition: the wavelet transform and kernel entropy to assess the dynamics (i.e. non-stationary characteristics) of the vibration signal.
- Integrated diagnosis based on probabilistic models of normality and using a belief network to model prior knowledge about the domain and interactions between key variables.

Understanding the Data

•8 sensors measuring vibration

•108 frequency bands (STFFT) for each sensor

•Too much data to build a model from.

Feature Selection

Features are selected using GTM with Feature Saliencies.

Sensors are selected by comparing inter-class separation in different plots.

Flying through the visualisation

Petroleum geochemistry: pIGI

Big Data Issues

- Almost all interesting questions involve multivariate answers.
- Don't forget the lessons of Medium Data:
 - data integrity;
 - non-linearity;
 - generalisation (training vs test: speed, reliability);
 - feature selection;
 - diagnostics.
- Scaling in number of variables and number of examples
 - Hierarchies: divide and conquer
 - Move as little information as possible
 - Models as 'data summarisers'
 - Bayes (again!) to combine data, information, models, …

Institute of Omnivariate Data Analytics

- Full 'data to decision' process: high-dimensional visualisation, information extraction, uncertainty modelling, inference techniques, data fusion, knowledge management, data curation, and web technologies
- 19 UK partners (mainly companies) and 4 international partners
- Bidding for a Centre for Doctoral Training
 - Research training
 - Partnerships: pilot projects; short courses and workshops; international exchanges; entrepreneurship
 - Open-source software

Conclusions

- We need to understand the vast quantities of data that surround us; visualisation and machine learning can help us in that task.
- Models can be used to uncover the hidden meanings of data.
- Visual analytics is a powerful tool that provides insight to nonspecialists.
- A probabilistic approach provides many benefits.
- It is a multivariate, multi-skilled, collaborative effort.

Generative Topographic Mapping

A thick rubber sheet studded with tennis balls. GTM defines p(y|x;W); use Bayes' theorem to compute $p(x|y^*;W)$ for a given point y^* in data space.

