

Structure

- Why Motorsport
- Green Motorsport
- EcoOne
- WorldFirst
- Other projects
- What now?

Motorsport

- Unique Engineering and Sport mix
- Motorsport Valley cluster :
 - 2400 businesses
 - 40000 skilled employees of which 25000 are engineers
 - £5 billion to UK economy
 - £3 billion exports to 40 countries
- UK is a global leader.

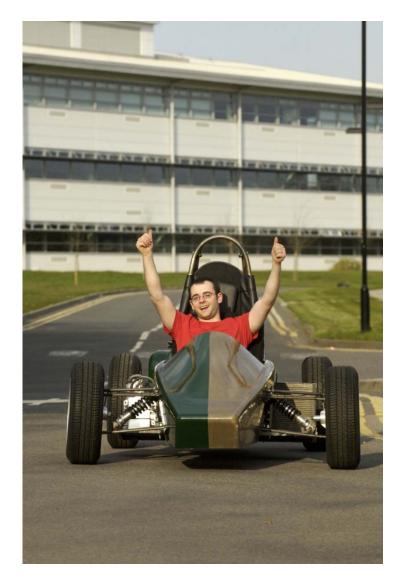
- BERR R&D scoreboard
 - R&D as a % of sales turnover
 - •Engineering <3%
 - •Pharma 13-14%
 - Motorsport > 30%
- £100 million R & D Tax credits claimed
- 85% of F1 car is different by end of season
- Culture of Innovation

Green Motorsport?

- Environmental Impact of motorsport is minimal
- But technologies introduced by the sport have the potential to have a positive impact elsewhere.
- Technology transfer into mainstream industry is often minimal.
- There is an opportunity for green motorsport to be the driving force for innovation in sustainability.

Green Motorsport?!

Automotive natural resins


- 1941 Henry Ford produced Soya bean based resins
- Seen here testing a boot lid
- Every Model A had "a bushel of Soya beans" in it

Where did it all begin?

Formula Student (Formula SAE) Undergraduate Engineering Project

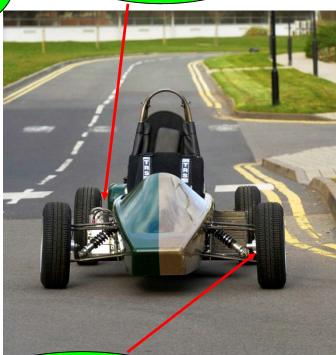
Sustainable materials

+

Formula student

ecoone

eco one


eco one

Hemp & Crop origin PU

Ethanol from Sugar Beat

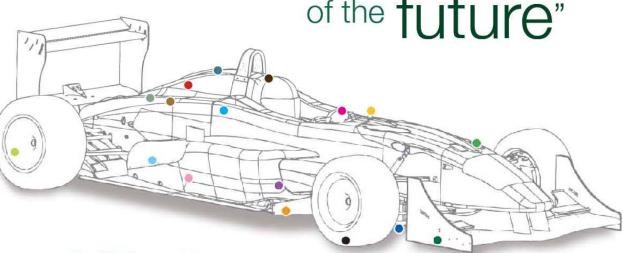
Rape Seed Oil

Potato Starch

CNSL & Kenaf

What did we achieve?

- Leveraged significant public engagement for very little expense...£10k
 - TV Radio, online, printed
 - Schools, International exhibitions, museums....
- Small network of partner companies
- Some interest from other universities.
- WIMRC proposal approval for bigger follow up project...WorldFirst.



- Engine Cover Recycled carbon fibre, Milled Carbon and Lola
- Wiring Loom Lightweight, halogen free and incorporating recycled materials. Yazaki
- Barge Board
 3 dimensionally woven natural fibre composite.
 University of Ulster
- Engine

 2 litre turbo diesel
 Biodiesel calibration
 by Scott Racing
- Brakes
 Non carbon discs with low
 ombodied energy. Cashow nut
 shell pads in development.
- Side Port Closing Panel Flax fibre and resin from recycled bottles.
 Andy Fox and Cray Valley
- Side Pod Glass fibre with resin from recycled bottles.
 Andy Fox and Gray Valley
- Radiators
 Coaled with a calalyst which converts ozone to oxyger. BASF PremAir

worldFarst

"Welcome to the sustainable racing car of the future"

Seat

Flax fibre shell, soy bean oil foam and recycled polyester fabric. Lear

 Steering Wheel Polymer derived from

Polymer derived from carrots and other root vegetables. Cellucomp

Wing Mirrors
 Potato starch core and flax fibre shell.

 Biopolymer Network

 Damper Hatch Recycled carbon fibre.
 Milled Carbon and Lola

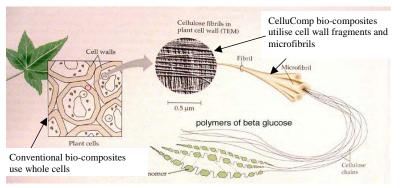
 Front Wing End Plate Potato starch core and flax fibro shall. Biopolymor Notwork.

 Bib Woven flax fibre prepreg material Lola and Lineo

Tyres
 Elimination of polycyclic aromatics. Avon

Lubricants
 Plant oil based
 lubricants: Fuchs

Brand Strategy
 Team naming, identity and design.
 Life



Technologies - Highlights

- Use of natural and sustainable materials
 - Potatoes, Carrots, Soya, Flax, Hemp etc.
- Biodiesel engine running on fuel derived from chocolate and vegetable oil
- Use of recycled materials
 - Polymers (PET in the resin)
 - Carbon fibres
- Environmentally friendly wiring loom
- Radiator to 'eat' ground level ozone

Steering Wheel

- Curran® offers a unique combination of properties which are on a par with CFRP
- It is a composite of cellulose nano fibres and resins
- It is produced in the form of a paste for simple moulding
- It has low quantities of organic solvents in the mixture
- The process offers a low toxicity and a low energy input manufacturing route.

The WorldF3rst Seat

Seat base utilises woven flax fibre prepreg material

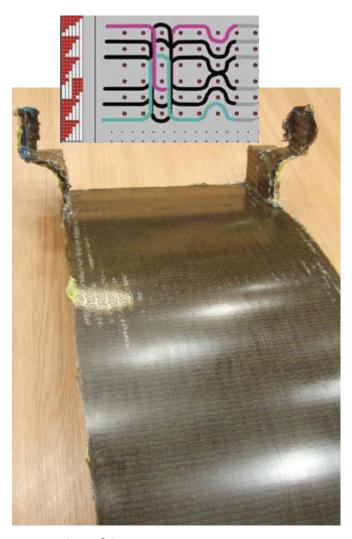
This is covered with soya bean derived foam

- Flax fibre is extracted from the skin (bast) of the flax plant stem
- The fibre is soft, lustrous and flexible, stronger than cotton but less elastic
- Best flax is used for linen, courser grades for twine and rope

The environmental advantages of soy-foam include

- a reduction of carbon dioxide
 (CO2) emissions when compared to petroleum-based material
- lower energy required to produce the material
- 24 percent renewable content
- reduced dependence on volatile energy markets

Natural Fibres


Flax fibre prepreg 'BIB'

- Use of natural fibres
 provided a major challenge
 - particularly for complex
 components
- Issues with fibre shape and resin systems

Flax fibre 3D woven Barge Board

Recycled Carbon Fibre

- Enormous quanitites of scrap Carbon fibre from industry e.g. aerospace and motorsport
- Boeing 787 over 50% composite materials
- Virgin CF highly energy intensive to produce
- Recycled typically by pyrolysis
- Recyclate turned into powder, chopped strand or long fibres
- Recycled woven fabric used in WorldFirst race car

Fuel

- Biodiesel for the engine is derived from waste chocolate (or any waste fat such as used cooking oil, cocoa butter, beef tallow etc.)
 - Liposuction fat!!
- Methanol Methyl Esters cheapest, commonly available
- Bio-Ethanol Ethyl Esters wine leftovers, cheese production

Wiring Loom

- Use of recycled materials
- Designed for recycling
 - Material marking
 - Easy disassembly
- Halogen free materials
 - Polyolefins instead of polyvinylchloride for insulation materials
- Lightweight
 - Use of aluminium in place of copper

Eco friendly wiring loom for WorldFirst

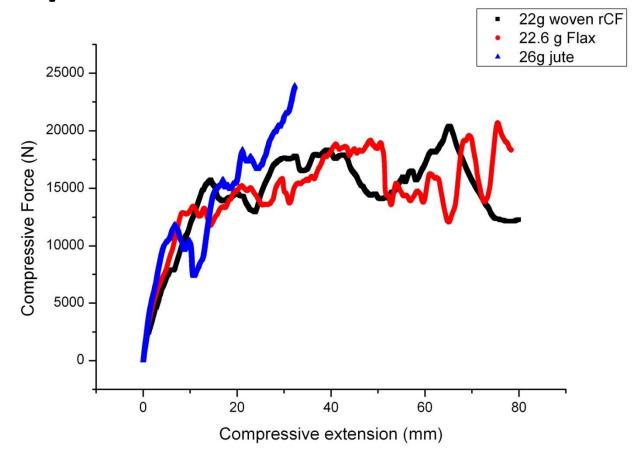
Radiators

- Coated with BASF Prem-Air catalyst
- As air passes over the radiator the catalyst converts
 Ozone to Oxygen
- Minimal effect on cooling performance
- Already fitted to over 3 million road cars

Is It Credible?

So What?

- More demonstrators: materials and power train
- 2 PhDs on use of waste cocoa for paints
- 2 PhD on biofuels
- 1 PhD on bio-resins
- Crash Structure work on recycled carbon fibre and natural fibre composites
- Demonstrating new 'digital' opportunities to industry



Natural fibre crash structures

- Natural fibres may be suitable for energy absorbing structures in motorsport
- More environmentally friendly especially at end of life

Comparison of natural fibre versus rCF

•Flax and Jute are able to match the static performance of woven rCF

What do we want to do next?

- Centre of Excellence for Sustainable Motorsport
 - Exploit project success to create academic impact
 - Further High Impact Projects with industry
 - Cross Sectorial Fertilisation of Ideas
 - EngD and PhD projects
 - Inputs into UG, MSc and Post Experience teaching
- See us at the Gadget Show Live in April

Summary

- Motorsport reaches people
- Provides a high impact 'vehicle' for public engagement that is more effective than more apposite contexts
- Motorsport has the potential to be a driving force for sustainable technology development and exploitation.
- We have an opportunity to exploit success of WorldFirst by creating a Centre of Excellence.

Our thanks go to

Engineering and Physical Sciences Research Council

